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CALCULATION OF THE SPALDING FUNCTION OVER A 

RANGE OF PRANDTL NUMBERS 

G. 0. GARDNER* and J. KESTlNt 

(Received I1 September 1962) 

Abstract-The paper presents an extensive tabulation of the Spalding function Sp = St. Pr/(&cf)l’a 
which is very useful in the calculation of heat transfer rates into fully developed turbulent boundary 

layers. Numerical data are presented for Pr = 0.71, 1, 7, 30, 100 and 1000. 

a, 
63 

at, 
Cft 
cm 
k 
kt, 
pr, 
pre, 
Prt, 

k?%, 
SPY 
St, 
T 
T to, 

T m, 

s, 
u oc, 

2’3 
L’*, 
X, 
x+, 

YY 
Y’, 

NOMENCLATURE 

thermal diffusivity; 
effective ‘thermal diffusivity ; 
eddy, or turbulent thermal diffusivity; 
skin-friction coefficient; 
specific heat at constant pressure; 
thermal conductivity; 
turbulent, or eddy thermal conductivity; 
Prandtl number; 
effective Prandtl number; 
turbulent Prandtl number; 
heat flux; 
Reynolds number based on length ; 
Spalding function, equation (26); 
Stanton number; 
temperature ; 
temperature at wall; 
temperature in free stream; 
longitudinal velocity component ; 
reduced velocity, equation (8a) ; 
free-stream velocity; 
transverse velocity; 
friction velocity, equation (8b); 
length co-ordinate ; 
reduced length co-ordinate, equation 

(16); 
transverse co-ordinate; 
reduced transverse co-ordinate, equa- 
tion (8). 

Greek symbols 

:; 
density; 
reduced temperature, equation (2) ; 

~___ 
* Graduate Student in Applied Mathematics at Brown 

University. 
t Professor of Engineering at Brown University, 

stream function ; 
stability criterion for numerical scheme; 
shearing stress; 
shearing stress at the wall; 
absolute viscosity; 
effective viscosity; 
eddy viscosity (absolute); 
kinematic viscosity; 
effective kinematic viscosity; 
eddy viscosity (kinematic) ; 
reduced independent variable, equation 
(24) ; 
similarity variable, equation (27a). 

1. EXPOSITORY REMARKS 

IN A PREVIOUS paper, Kestin and Persen [l] 
computed the so-called Spalding function for a 
Prandtl number equal to unity. Smith and Shah 
[2] adapted the underlying method to the 
calculation of Spalding functions to specified 
flux conditions at the wall, rather than to con- 
stant temperature conditions stipulated in [l]. 
Both papers were a development of an idea first 
suggested by Spalding [3] for the solution of the 
problem of the thermal entry length in a fully 
developed turbulent boundary layer. 

In order to acquaint the reader with the rami- 
fications of the calculations presented in the 
succeeding sections of this paper, it seems advis- 
able briefly to outline the theory and the class 
of problems to which it can be applied. 

The theory initiated by Spalding [3] and later 
discussed by Kestin and Richardson [4, 51, aims 
at providing a rational basis for the calculation 
of heat transfer into two-dimensional, incom- 
pressible, turbulent boundary layers. It is hoped 
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that further refinements of the theory will result 
in the establishment of a generally valid, semi- 
empirical differential equation for the calcula- 
tion of turbulent forced convection. At present, 
the theory is restricted to flows for which the 
thermodynamic properties of the fluid can be 
assumed independent of temperature. 

It is assumed by way of working hypothesis 
that the local mean energy balance in a turbulent 
boundary layer is governed by an equation 
identical with that in laminar flow: 

except for two circumstances. The local velocity 
components U, u and the local normalized 
temperature 

(T,--uniform temperature at infinity; T,- 
temperature at the wall) have been averaged with 
respect to time: and are thus steady. The local 
heat flux 4 is composed of two terms, both 
proportional to the local temperature gradient 
L@/ay, one due to pure molecular conduction, 
the other due to turbulent exchange. Hence 

where k is the molecular thermal conductivity 
and ktt is its “eddy” analogue. In this manner 
the familiar form of the energy equation is 
obtained : 

a0 a0 a ae 
ua;+ uy==ay a+, 

i 1 
(4) 

where 

a, = a + at (5) 
is the “effective” thermal diffusivity. 

The unavoidable empirical statement regard- 
ing the function at(x, y) is obtained by consider- 
ing the ratio 

prt c 41t 
at 

t We prefer to denote the eddy coefficients by the same 
symbols as those used for their molecular analogues, 
appending the subscript t for distinction. The resulting 
formulae are somewhat more symmetrical and easier to 
memorize. 

of the eddy kinematic viscosity to eddy diffusiv- 
ity, and by provisionally assuming, with Rey- 
nolds [6], that 

Prt =- 1, (7) 

provisionally, that is, until more is learned about 
it. The empirical formulation of the function 
v~(x, y) is replaced by the adoption of the 
validity of a universal law of the wall 17, 8, 91 in 
the form 

where 

U+ = y(y’) (8) 

u+ = .u 
v*’ 

y+ = Y!* @a) 
II 

and 

@b) 

is the friction velocity. 
In heat transfer problems it is only necessary 

to ensure that the form of the law of the wall (8) 
is adequate over a distance from the wall 
roughly equal to that over which the thermal 
profile changes rapidly. Thus the “law of the 
wake” [8] can be disregarded, at least provision- 
ally and certainly for high Prandtl numbers. 

The particular form of (8) is of secondary 
importance, as long as it conforms to experi- 
mental results. It is preferable to use a single, 
continuous relation valid from the laminar sub- 
layer outwards, and for practical reasons, 
Spalding’s [lo] inverted law of the wall 

y+ = u+ + 0.1108 ,+u+ - 1 _ 0.4u+ 

- + (0.4U+)2 - :, (0*4uf)3 - ;4 (0*4U+)4 
1 

(9) 

proves to be most convenient. 
Noting that the stream function 

$J= rudy 
. 0 

can be represented as 
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it becomes apparent that replacing first y by # 
and then by U+ will lead to a considerable 
simplification of (4), since yf, $1~ and U+ are 
unique functions of each other. Thus, Spalding 
applied the von Mises transformation to (4), and 
obtained 

ae a as 
ax=@ a&~ . ( 1 (11) x+=/~!?!$, (g=?aty=const.),(16) 

Replacing u by u+ and d# by vu+(dy+/du+) du+, 
at x = const., from (IO), we obtain 

v ae _-=- 
V* ax 

l du+a (F!K+&). 
uf dy+ au+ 

(12) 

The eddy diffusivity, or its equivalent, the 
ratio at = vt/Prt is now computed from the 
definition 

7 peCW?v) CL + pt du+ -= 
=-cLdy+’ (13) 720 PO"* 

Hence ae = veJPre where 

Pr, = 
1 + Iltlp 

1 IPr + pt/p . 1 /PX 
(14) 
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(15) 

Introducing, finally, a new independent variable 
x+ to replace x by the definition 

we can transform (11) to the working equation 

2. THE WORKING EQUATION 

The working equation has one flaw, it con- 
tains the ratio T/Q-~ which must be computed 
from our knowledge of the flow field. However, 
it is known from elementary theories of turbulent 
convection [I l] that the effect of this ratio on 
the final computation is not large. Secondly, as 
seen from Fig. 1, this ratio remains equal to 
unity for a considerable range of values of the 

I.0 
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u+ 

20 24 28 

FIG. 1. Variation of ratio I/+~ across boundary layer on a flat plate. Measurements due to Klebanoff [12]. 
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integration variable u+. The diagram in Fig. 1 
was computed from Klebanoff’s [12] very care- 
ful measurements on a flat plate at Rez ----: 
4.2 x 106. Thirdly, when the Prandtl number is 
large, or at the beginning of a thermal entry 
length, the thermal boundary layer is much 
smaller than the velocity boundary layer, and 
develops over a distance, that is over a range of 
values of u+, over which T/T~ - 1, substantially. 

Thus, as a first approximation, we put 
T/T~ = 1, and the working equation simplifies 
to 

The simplified form lends itself to numerical 
integration in terms of u+ and x+. The factors 
which translate x+ into x and u+ into y depend 
on the properties of the flow field which must be 
known in each particular case. 

Noting that (18), or (17) for that matter, is 
linear and homogeneous, it is realized that 
solutions can be superimposed, and that it is 
sufficient to integrate (18) for one set of bound- 
ary conditions in order to obtain universal 
finctions for the solution of problems in tur- 
bulent convection. The set of boundary condi- 
tions chosen is that of a thermal entry length. 

0=0 at x+=0 andall ui>O 
8 = 0 at u+ = a3 and all x+ > 0 I 
/3 = I at u+ = 0 andall x+ > 0. J 

For the calculation of heat transfer we 
to know the so-called Spalding function 

f ae 
spp, Pr) = -- ai-+ u+_o. ( 1 

(19) 

need 

(20) 

The Spalding function contains the Prandtl 
number as a parameter in view of the relation 
in (14). 

It is a simple matter to show that the local 
Stanton number, St, is related to the Spalding 
function, Sp, by the equation 

(21) 

where 

3. CALCULATION FOR Pr I 
The calculations, performed by Schmidt’s 

[13] step-by-step procedure on the Brown 
University IBM 7070 digital computer have been 
described elsewhere [I]. They related to the very 
simple equation 

60 ‘2 

ax+ --j(;+) q$,,- (22) 

subject to the boundary conditions (19) with 

f(u+) = u’- + 0.04432uf 

x 
1 
e0’4U+ _ 1 _ 0.4~.tV ._ JJ().4u-t)” 

- ; (0*4&)J . 
I 

(224 

4. CALCULATION FOR Pr :I I 
When the Prandtl number differs from unity, 

it is convenient to change to a new integration 
variable 

[ = ]g’ Pr, du+. (23) 

Introducing the simplifying assumption that 
Prt = 1 and the expression from (15) with the 
second simplifying assumption that T/T~ = 1 
into (14), we obtain 

’ -_ s 1’ du’,dy ‘- ,;;: - 1) + 1 ’ 
(24) 

and (17) transforms to 

a0 1 m 
ax+ u+[(l/Pr - 1) -+ dyi-/du+] f at2’ (25) 

with the boundary conditions 

6 -0 forallu+ and E atx+-O 7 

0=0 foru+=oo and[=a atallx+>O 

1931 foru+=O andE=O at all x+ > 0. : 
(25a) 

The introduction of the transformation (23) 
has reduced the working equation for Pr f 1 to 
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a form identical with that for Pr = 1, except for 
the form of the functionf(u+) in (22) which must 
now be changed to 

f[u+(k)] = u-1 (; + O-04432 [,“.4,, - 1 

- 0*4u+ - 4(0.4U+)2 + ; (0.4U+)3 I) . (25b) 

Just as before, interest is centred on the 
function 

Sp(x+, Pi-) = - gq ( 1 “t-0 

_ 

a8 

=-i > 
a~ _ * pr@) 

f--O 

so that 

Sp(x+, Pr) = - g _ * Pr. 
0 

(26) 
t-0 

Calculations have been performed for 
Pr = 0.71, 7, 30, 100, 1000 in addition to the 
value Pr = 1 in [l]. The procedures were exactly 
the same as those followed in that reference, 
including the use of the solution for Pr --f co 
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from [14, 151 to start the calculation with 
x+ = 10. 

The solution from equation (4) of [15] 
provides the function 

qy+, x’) = 1 _ $g! (27) 

where 

(u +)“Pr 
7= gx+ (274 

and it is necessary in it first to transform from 
yf to U+ with the aid of (9) and then to 6 with 
the aid of (24) which was integrated numerically 
by the Adams-Bashford method, i.e. by the 
scheme 

5(u,t + AU+) = E(u,+) + ‘$ [9 Pr&,;t + Au+) 

+ 19Pre(uz) - 5 Pr, (24: - Au+) 

+ Pr,(u,+ - Uuf)] (28) 

starting with 5 = 0 at U+ = 0. 
The grid for the finite difference scheme is 

shown in Fig. 2. It differs from that in [l] merely 

First First ; 
subscr. I subscr 2 I 

FIG. 2. Grid for the finite difference scheme. 
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Table 1. Steps required to preserve stability 

Interval x + Ax+ A5 largest p 

Pr = 0.71 
10 to 102 0.04 0.4 0.16 
103 to 103 0.08 0.4 0.32 
103 to 10” 0.5 0.8 0.25 
104 to 105 4.0 1.6 0.33 
105 to 106 20.0 3.2 0.31 

Pr = 7 
10 to 102 0.05 1.6 0.30 
10” to 10’ 0.5 3.2 0.38 
104 to 105 4.0 6.4 0.37 
105 to 108 40.0 12.8 0.43 

0 

Pr = 30 
8 

10 to 103 0.05 4.0 0.36 
102 to 10” 040 8.0 0.35 
lo” to 105 4.0 16.0; 8.0 044 
lo” to 108 25.0 32.0; 16.0 0.33 

Pr=lOO 
10 to 102 0.025 7.0 0.37 
102 to 103 0.2 14.0; 7.0 0.36 
103 to 104 1.5 28.0; 7.0 0.44 
101 to 1w 15.0 56.0; 7.0 0.42 
105 to 106 25.0 112.0; 7.0 0.30 

Pr = 1000 
10 to 102 0.04 40.0; 10.0 0.31 
103 to 103 0.4 80.0; 10.0 0.39 
103 to 104 1.6 160 ; 10.0 0.40 
104 to 105 10.0 320 ; 10.0 0.35 
lo” to 106 20.0 320 ; 10.0 0.47 

---~ YL- 

by the fact that the variable of integration is 
now E instead of u+. The difference equation is 

0(x+ + Ax+, 5) = qx+, !$) 

-t $4Xx+, 4 + 43 + w+, E -A,!) 

- 20(x+, 01, (29) 

where 

Ax+ 
p =f(~(Liign”’ (294 

The difference equation (29) permits us to 
calculate the temperature profile at xf + Ax+ 
in terms of .$ from the profile supposed to be 
known at x+. that at x+ = 10 being: eiven bv ” Y -~~ -, 

FIG. 3. Temperature profiles B(u +, x+) for x + = 102, 
1Os, lo*, 106, lo8 and for Pr = 0.71, 1, 7, 30, 100, 
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FIG. 4. The Spalding function S’(x+, Pr) in terms of x+ with Pr as parameter, 

eo loo 

FIG. 5. The Spalding function Sp(x+, Pr) in terms of 
Pr with x* as parameter, Pr < 100. 

(27) with the variables suitably changed. Thus, 
in Fig. 2, 

as in [l], except for the transformation of the 
independent variable from U+ to 8. 

The stability condition is still 

Ax+ 
’ =f([)(A[)2 < *+ 

and in order to satisfy it the steps listed in Table 
1 were chosen. In this connection it was found 
convenient to select larger steps A$ near f = 0 
and to decrease them as 5 -+ co for Prandtl 
number values from 30 upwards. Consequently, 
the table lists the largest and smallest steps in 
d[ with the single largest value for y. 

It is recalled that the differential equation (25) 
is singular at 5 = 0. However, it can once again 
be shown that the curvature of the temperature 
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0.01 

oi I IO Id Pr 
Id IO' 

FIG. 6. The Spalding function Sp(x I-, Pr) in terms of Pr with x I- as parameter in a logarithmic plot. 

profile 0(& x+) = 0 at 6 = 0, and to the present 
degree of approximation we can put 

(j =‘te,, 
22 2 (30) 

instead of attempting to calculate 8,, with the 
aid of (29b). 

5. RESULTS OF CALCULATIONS 

The results of the preceding calculations have 
been presented in a set of tables and diagrams, 
those for Pr = 1 having been included for 
completeness. 

The temperature profiles, plotted in terms of 
u+, are given in Fig. 3. The values of the Spalding 
function, (2l), i.e. 

Ct. D” 
(31) 

are seen plotted in Figs. 4, 5 and 6. Fig. 4 shows 
a plot in terms of x+ with the Prandtl number as 
a parameter, Fig. 5 shows a plot in terms of 
Prandtl number for Pr -=c 100, and Fig. 6 shows 
the same plot for the full range of Prandtl 
numbers, but in logarithmic co-ordinates. The 

diagram in Fig. 4 also shows the slopes 

which correspond to the asymptotic solution for 
Pr -+ cx). The Spalding function for various 
values of the Prandtl number has also been given 
in numerical terms in Table 2. 

As might have been expected, and as seen 
from Figs. 5 and 6, the effect of varying the 
Prandtl number becomes progressively smaller 
as the Prandtl number is increased so that the 
large steps in Prandtl number from Pr = 30 
onwards do not impede interpolation. 

The numerical relation between the inter- 
mediate variable f defined in (24) and the reduced 
velocity U+ = u/c.+ which has been obtained in 
the course of the present calculation can be 
utilized in a so-called Couette-type analysis. 
Accordingly, Table 3 lists values of the function 
~~‘(5, Pr) with the Prandtl number as a para- 
meter. Evidently, for Pr : 1 ZJ t = 5 and the tabu- 
lation becomes superfluous. Unfortunately, in 
the course of the calculation it was not practicable 
to impose rounded-off values for either W- or 5. 



x’ 0.71 1.0 

Sp(x+, Pr) for Pr = 

7.0 30 100 1000 

10 0.2228 0.2498 o-4779 0.7763 1.1598 2.4984 
20 0.1771 01987 0.3793 0.6158 0.9203 l-9807 
30 0.1554 0.1742 0.3321 0.5387 0.8047 1.7317 
40 0.1418 0.1589 0.3023 0.4901 0.7317 1.5742 
50 O-1322 0.1481 0.2813 0.4555 06798 l-4620 
60 0.1249 0.1399 O-2653 0.4292 0.6402 1.3764 
70 0.1191 0-133s O-2525 04082 06086 1.3080 
80 0.1144 O-l 282 02421 0.3910 0.5826 l-2515 
90 0.1105 01238 02334 0.3765 O-5606 1.2038 

I x 102 
2 
3 
4 
5 

4 
8 
9 

0.1072 0.1200 0.2259 0.3640 0.5418 1.1628 
0.08857 0.09929 0.1844 0.2934 0.4343 0.9260 
0.08013 009012 0.1665 0.2614 0.3841 0.8135 
0.07503 008466 0.1564 0.2427 0.3538 0.7435 
0.07 150 0.08092 0.1499 0.2303 0.3332 0.6946 
0.06887 0.07815 0.1455 0.2217 O-3183 0.6581 
0.06680 007598 0,1423 0.2154 0.3071 0.6295 
0.06511 0.07423 0.1398 0.2107 0.2984 06064 
0.06369 0.07276 0.1379 0.2071 0.2915 0.5874 

1 x 103 0.06248 @07151 0.1363 0.2042 0.2859 0.5714 
2 0.05555 006443 0.1288 0.1922 0.2628 o-4910 
3 005220 006101 0.1258 0.1887 0.2575 0.4638 
4 0.05007 0.05883 0.1240 O-1873 O-2557 0.4527 
5 O-04853 0.05725 0.1227 0.1866 0.2550 04478 
6 0.04734 0.05603 0.1217 0.1862 0.2545 o-4455 
7 0.04638 0.05504 0.1209 0.1859 0.2542 04444 
8 0.04557 0.0542 1 0.1202 0.1856 0.2540 04438 
9 0.04488 0.05350 O-1196 0.1853 0.2537 04434 

1 ‘i 10” 0.04428 00.5288 0.1191 0.1851 0.2535 0,443 1 
2 OMO64 0@4908 0.1152 0.1828 0.2521 0.4420 
3 0.03878 0.04712 0.1129 0.1812 0.2513 0.4418 
4 0.03756 0.0458 1 0.1113 0.1800 O-2509 04418 
5 0.03665 0.04484 0. I 102 0.1792 0.2506 0.4418 
6 0303594 0.04407 0.1093 0.1786 0.2504 0.4417 
7 0.03536 0.04345 0.1087 0.1781 0.2502 0.4417 
8 0.03487 0.0429 I O-1082 0.1778 0.250 I 0.4417 
9 0.03444 0.04245 0.1078 0.1776 0.2500 04417 

1 x 106 
2 

i 
5 
6 
7 
8 
9 

106 

0.03407 0.04205 0.1705 0.1774 0.2499 0.4416 
0.03168 0.03943 0.1060 0.1694 O-2490 0.4414 
0.03047 0.03810 0.1052 0.1692 0.2484 04412 
0.02966 0.03720 o-1044 0.1691 0.2479 04411 
002905 O-03652 o-1037 0.1689 0.2475 04410 
0.02857 0.03598 O-1031 O-1688 0.2472 04409 
0.02817 0.03553 0.1025 0.1687 0.2469 04408 
0.02784 0.03516 0.1019 0.1685 0.2467 04407 
0.02756 0.03484 0.1013 0.1684 0.2466 04407 
0.0273 I 0.03456 0.1008 0.1683 0.2464 0.4407 

CALCULATION OF THE SPALDING FUNCTION 

Table 2. The Spalding function Sp(x+, Pr) 
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TabIe 3. Values of the function u + (6, Pr)fbr various values o/ the Prandtl number (Note that for Pr = 1 we have u-f = 5) 
- _________~ _ _ ---_I- 

Pr = 0.71 I 
I 

Pr = 7.0 Pr = 30 

u+ ( ’ u+ I i I(f I 

Pr- 100 

Ui- 5 

05650 04011 0.2290 1603 0.1340 
1.125 0.7988 0.4570 3.199 0.2660 
1.690 1.200 0.6860 4.802 ; 04ooo 
2.255 1601 0.9140 6.398 0.5340 
2.815 1.999 1.143 8.000 0.6660 

4.020 0.1400 
7.980 0.2800 

12.00 0.4200 
16.02 0.5600 
19.98 0.7000 

14.00 0.0800 80.0 
2800 0.1600 160.0 
42.00 0.2400 240.0 
55.99 0.3200 320.0 
69.98 0.4000 399.9 

3.380 2401 1.372 9602 
3.940 2.800 1.601 11.20 
4.500 3.200 1.830 12.80 
5.055 3.598 2.060 1440 
5.610 3.999 2.290 16.00 

~ EE 
1.068 
1.200 

~ 1.334 

24.00 0.8400 83.96 0.4800 479.8 
28.01 0.9800 97.91 0.5600 559.5 
32.03 1.122 112.0 06420 641.0 
35.98 1.264 126.1 0.7220 720.1 
39.98 1406 140.0 0.8040 800.7 

6.160 4400 2,521 1760 
6.700 4.799 2.754 19.20 
7.235 5.199 2.988 20.80 
7.760 5600 3.224 22.40 
8.275 6.001 3.464 24.00 

1.468 
1604 
1.738 

1 1.874 
2.010 

43.98 1.550 154.1 0.8860 880.6 
48.02 1.694 168.0 0.9680 959.7 
51.99 1.842 182.0 1.052 1039*0 
56.01 1.992 196.0 1,138 1119,o 
59.99 2.146 209.9 1.226 1199.0 

8.775 6.399 3,707 25.60 
9.265 6.798 3.955 27.20 
9.745 7.198 4.209 28.80 

10.22 7.599 4.471 3040 
10.68 7.999 4.743 32.00 

2.148 64.01 2.226 217.0 1.318 1280.0 
2.286 67.99 2.306 224.0 1.412 1360.0 
2.426 71.99 2.388 231.0 1.512 1440.0 
2.714 80.02 2.472 238.0 1.618 1520.0 
2.860 83.99 2.558 245.0 1.732 1600*0 

11.13 8.398 5.027 3360 3.012 88.02 2.648 252.1 1.794 1640.0 
12.01 9.198 5.327 35.20 3.166 91.99 2.738 258.9 1.858 1680.0 
12.87 lO+xl 5647 36.80 3.326 95.99 2.834 266.0 1.926 1720.0 
13.71 10.80 5.993 38.40 3.492 99.98 2.932 272.9 2mO 17600 
14.54 11.60 6.373 40.00 3.666 104.0 3.036 280.0 2.078 1800.0 

1540 1240 6.799 41.60 3.850 108.0 
16.17 13.20 7.284 43.20 4.046 112.0 
16.98 14.00 7.851 44.80 4.256 116.0 
17.79 14.80 8.527 4640 4,486 120.0 
1860 15m 9.344 48.00 4.742 124.0 

3.146 287.0 2.164 1840.0 
3.260 294.0 2.258 1880.0 
3.384 301 *o 2.364 1920.0 
3.516 308.0 2.484 1960.0 
3.660 315.0 2.622 2000*0 

1940 1640 10.33 4960 
20.20 17.20 11.50 51.20 
21.01 18.00 12.83 52.80 
22.21 19.20 14.27 5440 
23.01 20.00 15.79 56.00 

5.032 128.0 3.818 322.0 2.790 2040‘0 
5.370 132.0 3.994 329.0 2.998 2080.0 
5.778 136.0 4.194 336.0 3.276 2120.0 
6.298 140.0 4.426 343.0 3.686 2160.0 

7.006 144.0 4.706 350.0 3.826 2170.0 

24.21 21.20 17.35 57.60 8.066 148.0 5.054 357.0 3.990 2180.0 
25.41 22.40 18.92 59.20 9.834 152.0 5.514 364.0 4.186 2190.0 
26.21 23.20 20.51 60.80 12.71 156.0 6.186 371.0 4.430 2200.0 
27.41 2440 22.11 6240 16.39 160.0 7.334 378.0 4.746 2210.0 
28.61 2560 23.71 64.00 20.34 164.0 9.918 385.0 5.186 2220.0 

29.81 26.80 25.30 65.60 
31.01 28.00 26.90 67.20 
32.21 29.20 28.50 68.80 
33.41 3040 30.10 7040 
34.61 3160 33.30 7360 
35.81 32.80 36.50 76.80 

I_ 

24.33 168.0 15.53 392.0 5.878 2230.0 
28.33 172.0 22.43 399.0 7.252 2240.0 
32.33 176.0 29.43 406.0 11.65 2250.0 
36.33 180.0 36.43 413.0 21.18 22600 
40.33 184,O 43.43 420.0 31.18 2270.0 
44.33 188.0 50.45 427.0 41.18 2280.0 

Pr = 1000 

u-k LC 
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Rbum&--Cet article prksente une tabulation importante de la fonction de Spalding Sp = St . Pr/($ cf)l@ 
t&s utile dans le calcul des taux de transmission de chaleur dans les couches limites turbulentes. Les 

donnCes numeriques sont pr&entees pour Pr = 0.71, 1, 7, 30, 100 et 1000. 

Zusammenfassung-Es werden ausfiihrliche Tabellen der Spaldingfunktion Sp = St. Pr/(+ cf)llz ge- 
bracht. Sie erweisen sich sehr ntitzlich bei der Berechnung des Wtirmeiiberganges in voll ausgebildeter 
turbulenter Grenzschicht. Die numerischen Angaben erstrecken sich auf Pr = 0,71; 1; 7; 30; 100 

und 1000. 

AnHoTaqHn-B CTaTbe IIpllBOfiFlTCFl IIOgpO6HbIe TahIPIqEd ~#yHKqmi CnOn$(HHra Sp = St. Pr/ 
(a- CfY, IIpHMeHfE?MbIe IIpM pXW?Te BHTeHClIBHOCTI4 IIepeHOCa TeIIJI3 B IIOJIHOCTbKl Pa3BIITOM 

IlOlJXiHHYHOM CJIOe. %CJEHHbE AaHHbIe IIpeACTaBJIeHbI AJIfl Pi. = 0,71; 1,7, 30, 100 12 1000. 


