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Abstract—The paper presents an extensive tabulation of the Spalding function Sp = St . Pr/(3¢/)*/?
which is very useful in the calculation of heat transfer rates into fully developed turbulent boundary
layers. Numerical data are presented for Pr = 0-71, 1, 7, 30, 100 and 1000.

NOMENCLATURE
a, thermal diffusivity;
ae,  effective thermal diffusivity;
at, eddy, or turbulent thermal diffusivity;
¢, skin-friction coeflicient;
¢p,  specific heat at constant pressure;
k, thermal conductivity;
k¢, turbulent, or eddy thermal conductivity;
Pr,  Prandtl number;
Pr., effective Prandtl number;
Pri, turbulent Prandtl number;
qd, heat flux;
Re;, Reynolds number based on length;
Spalding function, equation (26);
St,  Stanton number;
T, temperature;
Tw, temperature at wall;
temperature in free stream;
u, longitudinal velocity component;

u*, reduced velocity, equation (8a);

Ux, free-stream velocity;

v, transverse velocity;

vy, friction velocity, equation (8b);

x, length co-ordinate;

x*,  reduced length co-ordinate, equation
(16);

Vv, transverse co-ordinate;

y*,  reduced transverse co-ordinate, equa-
tion (8).

Greek symbols
P, density;
6, reduced temperature, equation (2);
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Y, stream function;

@, stability criterion for numerical scheme;
7, shearing stress;

Tw,  shearing stress at the wall;

i, absolute viscosity;

e,  effective viscosity;

e, eddy viscosity (absolute);

v, kinematic viscosity;

ve,  effective kinematic viscosity;
vt eddy viscosity (kinematic);

¢, reduced independent variable, equation
(24);
7, similarity variable, equation (27a).

1. EXPOSITORY REMARKS
IN A PREVIOUS paper, Kestin and Persen [1]
computed the so-called Spalding function for a
Prandtl number equal to unity. Smith and Shah
[2] adapted the underlying method to the
calculation of Spalding functions to specified
flux conditions at the wall, rather than to con-
stant temperature conditions stipulated in [1].
Both papers were a development of an idea first
suggested by Spalding [3] for the solution of the
problem of the thermal entry length in a fully
developed turbulent boundary layer.

In order to acquaint the reader with the rami-
fications of the calculations presented in the
succeeding sections of this paper, it seems advis-
able briefly to outline the theory and the class
of problems to which it can be applied.

The theory initiated by Spalding [3] and later
discussed by Kestin and Richardson [4, 5], aims
at providing a rational basis for the calculation
of heat transfer into two-dimensional, incom-
pressible, turbulent boundary layers. It is hoped
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empir1cal dxﬁ"erentlal equation for the calcula
tion of turbulent forced convection. At present,
the theory is restricted to flows for which the
thermodynamic properties of the fluid can be
assumed independent of temperature.

It is assumed by way of working hypothesis
that the local mean energy balance in a turbulent
boundary layer is governed by an equation
identical with that in laminar flow:

39 0 ag
P(‘p( +vo) Z’?g’ (1

except for two circumstances. The local velocity
components u, v and the local normalized
temperature
Tw —T

= =T @
(To—uniform temperature at infinity; Tw—
temperature at the wall) have been averaged with
respect to time, and are thus steady. The local
heat flux ¢ is composed of two terms, both
proportional to the local temperature gradient
08/éy, one due to pure molecular conduction,
the other due to turbulent exchange. Hence

o
g = (k + k) e 3

where k is the molecular thermal conductivity
and k;t is its “eddy” analogue. In this manner
the familiar form of the energy equation is
obtained:

o0 o o/ o
“ox e Ty (aeay) @)
where
ae=a+ a &)

is the “effective” thermal diffusivity.

The unavoidable empirical statement regard-
ing the function a«(x, y) is obtained by consider-
ing the ratio

Prt’A—t (6)

t We prefer to denote the eddy coefficients by the same
symbols as those used for their molecular analogues,
appending the subscript ¢ for distinction. The resulting
formulae are somewhat more symmetrical and easier to
memorize.
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matic vmr\nmty to pddv diffusiv-

1ty, and b p ov1s1onally assuming, w1th Rey-
nolds [6], that

PI'L == l, (7)

130G LU QULuL

emplrlcal formulatlon of the function
vt(x, y) is replaced by the adoption of the
validity of a universal law of the wall [7, 8, 9] in
the form

ut =gy (8)
where
u YUy ,
+o— + T
u o y , (8a)
and

T\ 172
O ( P) (80)
is the friction velocity.

In heat transfer problems it is only necessary
to ensure that the form of the law of the wall (8)
is adequate over a distance from the wall
roughly equal to that over which the thermal
profile changes rapidly. Thus the “law of the
wake” [8] can be disregarded, at least provision-
ally and certainly for high Prandt! numbers.

The particular form of (8) is of secondary
importance, as long as it conforms to experi-
mental results. It is preferable to use a single,
continuous relation valid from the laminar sub-
layer outwards, and for practical reasons,
Spalding’s {10] inverted law of the wall

y*+ =ut 4+ 0-1108 [e""‘u“ — 1 —0dur

I
— L (O4u) — L (O4ut — 214 (0~4u+)4] ©

proves to be most convenient.
Noting that the stream function

(]
p=| udy
JO
can be represented as

Y+ -+ +
o — uj ut dyt = y[ u* (QL) du*, (10)
0
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it becomes apparent that replacing first y by ¢
and then by ut will lead to a considerable
simplification of (4), since y+, /v and u* are
unique functions of each other. Thus, Spalding
applied the von Mises transformation to (4), and

obtained
o6 i o
525&((1314517]). (11)
Replacing u by u* and dy by vut(dyt/dut) dut,
at x = const., from (10), we obtain
v ob 1dut 0 aodut 00
o w & a \ v d et

(12)

The eddy diffusivity, or its equivalent, the
ratio a; = v¢/Pr; is now computed from the
definition

7 _pe0u/2y) p A pedut

and
e e T

dyt
i = du (15)

Introducing, finally, a new independent variable
x* to replace x by the definition

% dxt
o () 0o
0

we can transform (11) to the working equation

o 1dut 0 (1 7 00 17
ot —wayrae Prna) 17
2. THE WORKING EQUATION

The working equation has one flaw, it con-
tains the ratio 7/7, which must be computed

= . (13) from our knowledge of the flow field. However,
Tw PU% po dyt it is known from elementary theories of turbulent
Hence a. = ve/Pre where convection [11] that the effect of this ratio on
the final computation is not large. Secondly, as
pro— Ltmk (14 Seen from Fig. 1, this ratio remains equal to
® " 1/Pr -+ wi/u - 1/Prs unity for a considerable range of values of the
10 \ l
08 ‘ T
/v, i = \ —
06 \\
04 | |
7 \
o2
] \
o a 8 12 6 20 24 28

U+

FiG. 1. Variation of ratio r/r, across boundary layer on a flat plate. Measurements due to Klebanoff [12].
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integration variable u*. The diagram in Fig. 1
was computed from Klebanoff’s [12] very care-
ful measurements on a flat plate at Rey ==
42 x 108. Thirdly, when the Prandtl number is
large, or at the beginning of a thermal entry
length, the thermal boundary layer is much
smaller than the velocity boundary layer, and
develops over a distance, that is over a range of
values of u*, over which 7/, ~ 1, substantially.

Thus, as a first approximation, we put
r{mp = 1, and the working equation simplifies
to

o8 1 dut 2 (1 o8 18
ox  wtdytout (Pr; 5&1)' (18)

The simplified form lends itself to numerical
integration in terms of u* and x*. The factors
which translate x* into x and u* into y depend
on the properties of the flow field which must be
known in each particular case.

Noting that (18), or (17) for that matter, is
linear and homogeneous, it is realized that
solutions can be superimposed, and that it is
sufficient to integrate (18) for one set of bound-
ary conditions in order to obtain universal
Junctions for the solution of problems in tur-
bulent convection. The set of boundary condi-
tions chosen is that of a thermal entry length.

=0 at u*= o0 andall x* >0
f =1

=0 at xt+=0 andall ut >0
(19)

at ut =0 andall x* > 0.

For the calculation of heat transfer we need
to know the so-called Spalding function

/&b
Sp(x*, Pr) = — (éﬁ*)u*:o' (20)

The Spalding function contains the Prandtl
number as a parameter in view of the relation
in (14).

It is a simple matter to show that the local
Stanton number, St, is related to the Spalding
function, Sp, by the equation

1 1/2
St = Sp . g?Cf -,

Pr @h
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where

10—

e (0
Cfvaa;_,—(Uw) . (213)

\ /

3. CALCULATION FOR Pr = |
The calculations, performed by Schmidt’s

[13] step-by-step procedure on the Brown
University IBM 7070 digital computer have been
described elsewhere [1]. They related to the very
simple equation

&t I o

ox+ :j‘(u+) au+y? (22)
subject to the boundary conditions (19) with

Sfut) = ut + 0:04432u+
X [e““* — 1 — Odut — 3(0-4uty?

- é (0'4u+)3} . (22a)

4. CALCULATION FOR Pr £ 1
When the Prandtl number differs from unity,
it is convenient to change to a new integration
variable

¢ = [ Produt. (23)

Introducing the simplifying assumption that
Pry =1 and the expression from (15) with the
second simplifying assumption that +/7, =1
into (14), we obtain

" du 24
&€= L dutidy-(1jpr— 1+ 17 2
and (17) transforms to
l bl
ox+  ur[(1/Pr — 1) + dy+t/du] o¢
with the boundary conditions
g =0 forallut and¢ atxt =0 |

§ =0 forut = oo and € = o0 atallx* >0
=1 forut =0 and¢é =0 atallx*t>0.
(25a)

The introduction of the transformation (23)
has reduced the working equation for Pr # 1 to



CALCULATION OF THE

a form identical with that for Pr = 1, except for
the form of the function f(«*) in (22) which must
now be changed to

NG {;r +oouz2 [eows -

— Ovdut — J(0-4ut) + %(0-4u+)3] } (25b)

Just as before, interest is centred on the
function

Sp(x*, Pr) = o6
p(x+, Pr) = — T+ e

= o Pre0
= (é_é)fro re(0)
so that

Sp(x*, Pr) = — (8—9) - Pr. (26)
) i,

Calculations have been performed for
Pr =0-71, 7, 30, 100, 1000 in addition to the
value Pr = 1 in [1]. The procedures were exactly
the same as those followed in that reference,
including the use of the solution for Pr—> oo
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from [14, 15] to start the calculation with
xt =10.

The solution from equation (4) of [i5]
provides the function

o ¥(1/3, 1)
where
+)2p,
_ (y9))€+ ’ @7a)

and it is necessary in it first to transform from
y* to ut with the aid of (9) and then to £ with
the aid of (24) which was integrated numerically
by the Adams-Bashford method, i.e. by the
scheme

.
u} -+ ) = £0s7) + Sy 9 Prelu -+ du)
- 19Pro(ut) — 5 Pro(ut — dut)
+ Pro(uy — 24ut)] (28)

starting with £ = 0 at u* = 0.
The grid for the finite difference scheme is
shown in Fig. 2. 1t differs from that in [1] merely
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Fic. 2. Grid for the finite difference scheme.
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Table 1. Steps required to preserve stability

Interval x*+ dx+ A¢ largest ¢
Pr =071
10 to 10° 0-04 0-4 016
10% to 10° 0-08 0-4 0-32
10® to 104 0-5 08 0-25
10* to 10° 40 1-6 033
10° to 108 200 32 0-31
Pr=1
10 to 107 0-05 16 0-30
10° to 10¢ 05 32 0-38
10* to 10° 40 64 0-37
10° to 10° 400 128 043
Pr =130
10 to 10° 0-05 40 0-36
10% to 104 0-40 80 0-35
10* to 10° 40 16:0; 80 0-44
10° to 10° 250 32:0; 160 033
Pr = 100
10 to 107 0-025 70 0-37
102 to 10° 02 14-0; 70 0-36
10° to 10t 1-5 280; 70 0-44
10* to 10° 150 56:0; 70 0-42
10° to 108 250 112:0; 70 030
Pr = 1000
10 to 10? 0-04 40-0; 100 0-31
102 to 10° 0-4 80-0; 100 0-39
10® to 10* 16 160 ; 100 0-40
10* to 10° 10:0 320 ; 100 0-35
10° to 108 200 320 ; 100 0-47

by the fact that the variable of integration is
now ¢ instead of u*. The difference equation is

B(x* + dxt, €) = 0(x™, €)
+ [f(x+, £ - 4€) + 0(xt, £ — 48
— 26(x+, )}, (29)

where

Ax+
The difference equation (29) permits us to
calculate the temperature profile at x* + dx+
in terms of ¢ from the profile supposed to be
known at x*, that at x+ = 10 being given by
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FiG. 3. Temperature profiles 8(ut, x+) for x+ = 10%,
108, 10¢, 10° 10® and for Pr = 0-71, 1, 7, 30, 100,
1000.
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FiG. 4. The Spalding function Sp(x*, Pr) in terms of x* with Pr as parameter.
2 (27) with the variables suitably changed. Thus,
~ 1 in Fig. 2,
-
7
10 R I Oa3 = b15 -+ @3(B1s + O34 — 201,) (29b)
o ol p as in [1], except for the transformation of the
F os i //< - _1 independent variable from u+ to ¢,
§ / &’210 The stability condition is still
3 i 4 _
5 o /o A o5
LY - " = feage = >
—f1— 4 partd
[
04 P and in order to satisfy it the steps listed in Table
L L s 1 were chosen. In this connection it was found
e T __——1—1  convenient to select larger steps 4¢ near £ =0
==
02 = ~—t -+ -4 and to decrease them as £-» oo for Prandtl
number values from 30 upwards. Consequently,
T T the table lists the largest and smallest steps in
4¢ with the single largest value for ¢.
Q 20 L el €0 80 00

£r

Fic. 5. The Spalding function Sp(x+, Pr) in terms of

Pr with x*+ as parameter, Pr < 100.

1t is recalled that the differential equation (25)
is singular at ¢ = 0. However, it can once again
be shown that the curvature of the temperature
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Fi1G. 6. The Spalding function Sp(x*, Pr) in terms of Pr with x " as parameter in a logarithmic plot.
profile 6(¢, xt) = 0 at £ = 0, and to the present diagram in Fig. 4 also shows the slopes
degree of approximation we can put 0-53835
1+ 6, Sp(x+*, Pr) = (s +)1/3 Pri (32)
O — - 52 (30)

instead of attempting to calculate 8,, with the
aid of (29b).

5. RESULTS OF CALCULATIONS

The results of the preceding calculations have
been presented in a set of tables and diagrams,
those for Pr ==1 having been included for
completeness.

The temperature profiles, plotted in terms of
u*, are given in Fig. 3. The values of the Spalding
function, (21), i.e.

St - Pr
TG

are seen plotted in Figs. 4, 5 and 6. Fig. 4 shows
a plot in terms of x*+ with the Prandtl number as
a parameter, Fig. 5 shows a plot in terms of
Prandtl number for Pr < 100, and Fig. 6 shows
the same plot for the full range of Prandtl
numbers, but in logarithmic co-ordinates. The

Sp(x+, Pr) = 3N

which correspond to the asymptotic solution for
Pr-— ow. The Spalding function for various
values of the Prandtl number has also been given
in numerical terms in Table 2.

As might have been expected, and as seen
from Figs. 5 and 6, the effect of varying the
Prandtl number becomes progressively smaller
as the Prandtl number is increased so that the
large steps in Prandtl number from Pr = 30
onwards do not impede interpolation.

The numerical relation between the inter-
mediate variable ¢ defined in (24) and the reduced
velocity u™ = ufv, which has been obtained in
the course of the present calculation can be
utilized in a so-called Couette-type analysis.
Accordingly, Table 3 lists values of the function
ut(¢, Pr) with the Prandtl number as a para-
meter. Evidently, for Pr == 1 u* == £and thetabu-
lation becomes superfluous. Unfortunately, in
the course of the calculation it was not practicable
to impose rounded-off values for either u* or .
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Table 2. The Spalding function Sp(x*, Pr)
Sp(x+t, Pr) for Pr =

x* 071 10 70 30 100 1000
10 0-2228 02498 0-4779 07763 1-1598 24984
20 01771 0-1987 0-3793 0-6158 0-9203 1-9807
30 01554 01742 03321 0-5387 0-8047 1-7317
40 0-1418 0-1589 0-3023 04901 0-7317 1-5742
50 0-1322 0-1481 0-2813 0-4555 06798 1-4620
60 0-1249 0-1399 02653 0-4292 06402 1-3764
70 01191 0-1335 02525 0-4082 0-6086 1-3080
80 01144 0-1282 0-2421 03910 0-5826 1-2515
90 0-1105 01238 0-2334 0-3765 0-5606 1-2038
1 % 102 0-1072 0-1200 02259 0-3640 0-5418 1-1628
2 0-08857 009929 01844 02934 04343 09260
3 0-08013 009012 0-1665 02614 0-3841 0-8135
4 007503 008466 01564 02427 0-3538 0-7435
5 007150 0-08092 0-1499 0-2303 0-3332 0-6946
6 0-06887 0-07815 0-1455 0-2217 0-3183 0-6581
7 0-06680 0-07598 0-1423 0-2154 0-3071 0-6295
8 0-06511 007423 0-1398 0-2107 0-2984 0-6064
9 0-06369 0-07276 01379 0-2071 02915 0-5874
1 x 108 006248 0-07151 01363 02042 02859 05714
2 005555 0-06443 0-1288 01922 0-2628 0-4910
3 0-05220 006101 0-1258 0-1887 02575 04638
4 0-05007 005883 0-1240 0-1873 0-2557 04527
5 0-04853 0-05725 0-1227 0-1866 0-2550 04478
6 004734 0-05603 01217 0-1862 02545 0-4455
7 0-04638 0-05504 0-1209 0-1859 02542 04444
8 0-04557 0-05421 0-1202 0-1856 0-2540 0-4438
9 0-04488 0-05350 0-1196 0-1853 0-2537 0-4434

1 x 108 004428 0-05288 0-1191 0-1851 0-2535 04431
2 0-04064 0-04908 01152 0-1828 0-2521 0-4420
3 0-03878 004712 01129 0-1812 02513 0-4418
4 0-03756 0-04581 0-1113 0-1800 02509 0-4418
5 0-03665 0-04484 01102 0-1792 02506 04418
6 003594 0-04407 0-1093 0-1786 0-2504 0-4417
7 003536 0-04345 0-1087 01781 02502 04417
8 0-03487 0-04291 0-1082 01778 0-2501 0-4417
9 003444 0-04245 0-1078 0-1776 0-2500 0-4417
1 x 108 0-03407 004205 0-1705 01774 02499 0-4416
2 003168 003943 0-1060 01694 02490 04414
3 0-03047 0-03810 0-1052 01692 0-2484 04412
4 0-02966 003720 0-1044 0-1691 0-2479 0-4411
5 0-02903 0-03652 0-1037 0-1689 0-2475 0-4410
6 002857 003598 0-1031 0-1688 0-2472 0-4409
7 0-02817 0-03553 0-1025 0-1687 02469 0-4408
8 002784 0-03516 0-1019 01685 0-2467 0-4407
9 002756 0:03484 0-1013 0-1684 0-2466 04407
10¢ 002731 003456 0-1008 01683 0-2464 0-4407
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Table 3. Values of the function u* (¢, Pr) for various values of the Prandtl number (Note that for Pr = 1 we have u+ = §)

| !
Pr =071 Pr=170 : Pr=130 Pr =100 Pr = 1000
ut ¢ ut ¢ ! ut ¢ wt ¢ ut ¢

0-5650 0-4011 02250 1-603 0-1340 4-020 0-1400 1400 = 00800 80-0
1125 0-7988 0-4570 3199 0-2660 7-980 0-2800 28:00 | 01600 160-0
1-690 1-200 0-6860 4-802 0-4000 1200 0-4200 42:00 0-2400 2400
2-255 1-601 0-9140 6-398 i 0-5340 16-02 0-5600 55-99 0-3200 3200
2-815 1999 ' 1143 8000 ' 0-6660 19-98 0-7000 69-98 0-4000 3999

3-380 2:401 1372 9-602 0-8000 24-00 0-8400 8396 04800 479-8
3-940 2800 | 1-601 1120 09340 28-01 0-9800 9791 | 0-5600 559-5
4-500 3-200 1-830 1280 1-068 32-03 1122 1120 0-6420 6410
5055 3-598 2060 14-40 1-200 35-98 1264 126:1 0-7220 7201
5-610 3-999 2-290 1600 | 1334 3998 = 1-406 140-0 0-8040 800-7
6160 4-400 2521 17-60 1-468 43-98 1-550 1541 . 0-8860 880-6
6-700 4-799 [ 2-754 1920 1-604 4802 | 1694 168-0 0-9680 959-7
7235 5199 2988 20-80 \ 1-738 51-99 1-842 182:0 l 1-052 10390
7-760 5-600 ( 3224 22-40 1-874 56-01 1-992 196:0 1-138 11190
8275 6001 3464 2400 | 2010 59-99 2-146 209-9 [ 1226 1199-0
8775 6-399 | 3707 2560 2-148 64-01 2:226 2170 ' 1318 1280-0
9-265 6798 3955 2720 2:286 6799 2-306 2240 ;1412 1360-0
9-745 7-198 4-209 28-80 2:426 71-99 2-388 2310 | 1512 1440-0
10-22 7-599 4-471 30-40 2-714 80-02 2:472 2380 . 1618 15200
10-68 7999 | 4743 32:00 2-860 8399 | 2558 2450 1-732 16000
11-13 8398 5027 33-60 3012 88-02 2-648 2521 1-794 1640-0
12:01 9:198 5327 3520 3-166 91-99 2738 2589 1-858 1680-0
12-87 10-00 5-647 36-80 3-326 95-99 2:834 2660 | 1-926 17200
1371 10-80 5993 38440 | 3492 99-98 2932 2729 2000 17600
14-54 1160 ! 6373 40-00 3-666 104-0 3-036 2800 ‘ 2078 1800-0
15-40 12-40 6799 41-60 3-850 108-0 3-146 2870 2-164 1840-0
1617 1320 7-284 4320 4-046 112:0 3260 2940 | 2258 1880-0
1698 1400 7-851 44-80 4256 1160 | 3384 301-0 2-364 1920-0
17779 14-80 8527 46-40 4-486 1200 3-516 308-0 2484 1960-0
18:60 15-60 \ 9-344 48-00 4742 124-0 3-660 3150 2:622 20000
19-40 1640 } 1033 49-60 5032 1280 3-818 3220 \ 2:790 2040-0
20-20 1720 11-50 51-20 5-370 132:0 3994 3290 2-998 2080-0
21-01 18-00 12-83 52-80 5778 136:0 4-194 3360 . 3276 21200
22:21 1920 1427 54-40 6298 140-0 4-426 343-0 3-686 2160-0
23-01 20-00 1579 56-00 7-006 1440 4-706 3500 3-826 21700
24-21 21-20 \ 1735 57-60 8-066 148-0 5054 3570 3990 21800
25-41 22440 | 1892 59-20 9-834 152:0 5514 364-0 4-186 21900
2621 2320 1 20-51 60-80 1271 1560 6186 371-0 4430 22000
27-41 24-40 22:11 62:40 16:39 160-0 7334 3786 | 4746 2210-0
2861 25-60 g 2371 64-00 20-34 1640 | 9918 3850 | 5186 22200
29-81 2680 | 2530 65-60 24:33 1680 15-53 3920 ! 5878 2230-0
31-01 2800 | 2690 67-20 2833 172:0 22:43 3990 | 7252 22400
3221 2920 | 2850 68-80 32-33 1760 | 2943 4060 11-65 22500
33-41 30-40 L 30-10 70-40 36-33 1800 | 3643 413-0 21-18 2260-0
34-61 3160 - 3330 73-60 40-33 1840 43-43 42000 | 3118 2270-0
35-81 3280 | 3650 76:80 44-33 1880 50-45 4270 . 4118 22800
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Résumé—Cet article présente une tabulation importante de la fonction de Spalding Sp = St . Pr/(} ¢)*"?
trés utile dans le calcul des taux de transmission de chaleur dans les couches limites turbulentes. Les
données numériques sont présentées pour Pr = 0.71, 1, 7, 30, 100 et 1000.

Zusammenfassung—Es werden ausfiihrliche Tabellen der Spaldingfunktion Sp = St . Pr/(} ¢f)!/? ge-
bracht. Sie erweisen sich sehr niitzlich bei der Berechnung des Wirmeiiberganges in voll ausgebildeter
turbulenter Grenzschicht. Die numerischen Angaben erstrecken sich auf Pr = 0,71; 1; 7; 30; 100

und 1000.

Andoramma—B crathbe mpuBoaATcs noapofuble Tabauus PyHruuu Croaauura Sp = St. Pr/
(4 ¢r)M/%, IpUMeHAEMBle IPY pacUeTe MHTEHCHBHOCTH TIEPEHOCA TeIla B II0JIHOCTBIO PASBUTOM
HOTPaHUYHOM cioe. UucrneHHHe fanHBe npefcraBiensl maa Pr=0,71; 1,7, 30, 100 u 1000.



